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Figure 1: Our method regularises complex paths, such as the depicted refracted caustics, to drastically reduce the variance of path tracing
estimators in exchange for a small systematic error. A single hyperparameter 3 controls the user-defined level of tolerated noise during an
offline optimisation process and offers different bias-variance trade-offs during rendering. The left and right image show how the noise and
convergence time for path tracing and path guiding, respectively, are improved when applying our method with two distinct sets of learnt
parameters. We render the right image to achieve equal noise using an adaptive sampler, whereas the left image has a fixed count of 512

samples per pixels.

Abstract

We present Optimised Path Space Regularisation (OPSR), a novel regularisation technique for forward path tracing algorithms.
Our regularisation controls the amount of roughness added to materials depending on the type of sampled paths and trades
a small error in the estimator for a drastic reduction of variance in difficult paths, including indirectly visible caustics. We
formulate the problem as a joint bias-variance minimisation problem and use differentiable rendering to optimise our model.
The learnt parameters generalise to a large variety of scenes irrespective of their geometric complexity. The regularisation added
to the underlying light transport algorithm naturally allows us to handle the problem of near-specular and glossy path chains
robustly. Our method consistently improves the convergence of path tracing estimators, including state-of-the-art path guiding
techniques where it enables finding otherwise hard-to-sample paths and thus, in turn, can significantly speed up the learning of

guiding distributions.

CCS Concepts
o Computing methodologies — Rendering;

1. Introduction

Realistically representing and understanding our world is a chal-
lenge that various fields have been hard at work on. In computer
graphics, particularly for physically-based rendering, this translates
to algorithms that can simulate the light transport with such accu-
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racy that it can be hard to distinguish between a synthetic image
and a photograph. However, very often, there is a trade-off between
algorithmic complexity and the range of phenomena we can sim-
ulate efficiently. Among the many techniques that try to solve the
light transport problem, path tracing is ubiquitous in production;
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its success relies mainly on its simplicity and ease of integration in
rendering systems. However, physical phenomena such as visible
or indirectly visible focused light through specular interfaces, also
called caustics, can be extremely challenging to simulate efficiently.

Techniques such as bidirectional path tracing [VG95a], photon-
mapping [Jen96] or vertex-connection and merging [GKDS12] can
be suitable for rendering some or all of the aforementioned light
effects. However, straightforward algorithms such as path tracing
are preferred in production systems over more involved techniques
which are often fragile and less flexible. Improving the convergence
of renders while maintaining visual fidelity has been a challenge
since the first path-traced movies arrived on our screens [DHO09].
Allowing some error in the final image to reduce variance can be a
powerful choice when it enables rendering scenes that, previously,
would have been impossible to render in a reasonable amount of
time. Therefore, many production systems apply a form of reg-
ularisation called roughening [DH09; FHP*18], which consists in
adding roughness to materials to ease the sampling of difficult paths.
Kaplanyan et al. [KD13] introduced a similar kind of regularisation
based on the use of mollifiers [HA98] which allows the sampling
of previously unsamplable paths via a biased but consistent estima-
tion. Unfortunately, adding roughness to materials can introduce a
fair amount of bias in the rendered image.

Introducing the right amount of roughness to reduce variance
while keeping the error low is central to our work. We leverage
differentiable rendering [LADL18; NVZJ19] to model the problem
as a joint bias-variance minimisation and selectively regularise
vertices along specific paths during light transport. While the
estimator resulting from using our roughening model is biased, we
demonstrate that it can be made consistent in presence of mollifiers.
Furthermore, our regularisation scheme can work on arbitrary
scenes without the need to re-run an optimisation process, al-
lowing a straightforward implementation in any forward path-tracer.

More concisely, our contributions are :

e A novel path space regularisation technique that depends on the
type of sampled path and improves the sampling of complex
caustics and glossy path chains (Section 4.1).

o Alightweight roughening model optimised entirely offline for the
desired bias-variance trade-off (Section 4.4).

o The derivation of a consistent estimator based on mollifiers that
uses our proposed regularisation strategy. (Section 4.2)

2. Related Work

The first unbiased Monte Carlo integration strategy to solve light
transport was proposed by Kajia [Kaj86] using a single integral
formulation known as the rendering equation. Veach later showed
how different strategies could be optimally combined using multi-
ple importance sampling (MIS) [VG95b]. This allowed the design
of robust estimators in the context of forward path tracing by com-
bining both the importance sampling of the incident light at a point
as well as the bidirectional scattering function distribution (BSDF).
Bidirectional path tracing [VG95a; LW98] is also the result of com-
bining both importance and light tracing into a single algorithm
capable of efficiently resolving directly visible caustics while not
impeded by the typical restrictions that light tracing imposes.

Unfortunately, sampling indirectly seen caustics or so-called
"SDS" paths, is still as hard for bidirectional path tracing as for
a unidirectional estimator since the singularities due to specular
interfaces now appear in both light transport directions. Photon
mapping [Jen96] is a two-pass algorithm; photons landing on dif-
fuse surfaces are stored in a tree-like data structure and later, during
a forward path tracing pass, the incident radiance at the camera is
computed using kernel-based radiance estimation. Progressive pho-
ton mapping [HOJOS8] and its stochastic variant [HJ09; KZ11] lead
to consistent estimators by reducing the radius of the kernel as the
number of samples used increases. Unfortunately, for large scenes
with highly detailed geometry, the large number of photons needed
can become impractical. Furthermore, in regions of the scene where
no caustics are visible, the photon pass might be unnecessary and
slower compared to simple path tracing [GPSK18].

Path guiding is a variance reduction technique that aids in diffi-
cult light transport conditions. Its exceptional versatility in solving
complex light simulations, even using a simple unidirectional path
tracer, has made it a strong choice in any renderer [VHH*19]. Path
guiding techniques learn an incoming light field distribution at ev-
ery point in the scene to importance sample the indirect illumination
and effectively guide the traced rays towards light sources. Vorba et
al. [VKS*14] use a mixture of Gaussians to learn directional distri-
butions from both importons and photons in a back and forth online
learning strategy. Miiller et al. [MGN17] learn from the forward
path traced particles only and use an efficient quadtree structure
to represent the directional distributions providing a practical ap-
plication for forward path tracing algorithms. Recent works also
focused on guiding the product of the BSDF and the indirect light
using mixtures of Gaussians [HEV*16] or deep neural networks
[MMR*18].

Techniques such as manifold next event estimation (MNEE)
[HDF15] or, more recently, specular manifold sampling (SMS)
[ZGJ20] can be used in classical path tracing to deterministically
find intermediate vertices that obey Fermat’s principle such as to
form an admissible path for next event estimation. While MNEE
only handles refraction through specular interfaces, SMS gener-
alises the concept to allow the sampling of both reflected and re-
fracted caustics in a unified framework. Unfortunately, the Newton
solver used by those techniques can be subject to numerical instabil-
ities and, while it can generalise to glossy interfaces, the overhead
of performing a manifold walk in that case often no longer compen-
sates for its variance reduction effect.

The regularisation technique introduced by Kaplanyan et al.
[KD13] allows the sampling of previously unsamplable paths due
to singularities arising in the integrand. This is achieved by intro-
ducing mollifiers of the Dirac delta distributions to regularise light
transport. In a similar setting, Jendersie et al. [JG19] apply a set
of heuristics to reduce the bias introduced when using mollifiers
for the particular case of micro-facet distributions. Regularisation
can also be combined with other strategies using MIS [BIOP13] or
in more complex light transport algorithms such as Markov Chain
Monte Carlo [SK16]. Our work is closely related to the path space
regularisation technique introduced by Kaplanyan et al. and can be
seen as an extension of their work where the initial mollification
radius is learnt depending on the sampled type of path in the scene.
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3. Preliminaries

In this section, we recall key concepts underlying our proposed
regularisation method. This includes the path space formulation of
the rendering equation, singularities in path space, an introduction
to differentiable rendering and the definition of mollifiers.

3.1. Path Space Formulation

Veach defines the space of paths ¥ of length k& segments on the
scene manifold M:

= k+1
sz{xz(xo,xl,...,xk) | (xo,xl,..‘,xk)eM * }

The union of all such space forms the path space P = Ule Pp.. The
measurement M, typically a pixel value, in the path space integral
formulation [Vea97] can then be written as

M= [ @) dute) M
P
The measurement contribution function m(x) is defined as

m(x) =We (x0,%1)T(X)Le (X, Xje—1) @

where W, is the response of the sensor at xg, 7(¥) the path’s
throughput and L. (xj,x;_1) the emitted radiance at vertex xp
towards x_;. The throughput corresponds to the product of the
reflectance functions p along a path:

k-1

T(®)=G(xo.x) [ | plxjo1.x)% 01 1 @))Gx )% 01)

Jj=1
where we assume @; € R to be the roughness extracted from the
material description at the j-th vertex, and G (x j,x j;1) is the geo-
metric term accounting for the conversion from solid angle to area
measure as well as the visibility term.

In the rest of this paper, we will assume, without loss of gener-
ality, that the reflectance function can always be considered diffuse
above a certain roughness threshold, and zero roughness indicates a
perfectly specular BSDF. Moreover, we suppose paths always start
at the sensor with vertex x.

3.2. Singularities in path tracing

Veach [Vea97] extended the regular expression notation introduced
by Heckbert [Hec90] for light paths with two more symbols describ-
ing the directional and spatial properties of sensors and emitters (see
Figure 2). He describes a complete path using a full-path regular
expression:

E(S|D)(SID)(SID)*(S|D)(S|D)L

where each end-point was assigned a colour for clarity. With the help
of this notation, Veach proved in his thesis the necessary condition
for a path to be samplable when using only local sampling strategies
such as BSDF sampling or next event estimation:

Theorem 1 Let X be a path generated by a local sampling algorithm
for which the measurement contribution function m(X) is non-zero.
Then X necessarily has the form E(S|D)*DD(S|D)*L, i.e. it must
contain the substring DD. Furthermore, it is possible to generate
any path of this form using local sampling strategies.
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Figure 2: Extended Heckbert notation for emitters.The different
regular expressions that can describe an emitter. For example, SSL
describes a point light with emission over a set of directions with
measure zero.

(a) (b)

Figure 3: Rendering of a scene with a perfectly specular material
and a point light source. Part of the light transport is missing when
using classical path tracing with NEE (a). The missing caustics
appear if we slightly increase the size of the area light (b) or the
roughness of the material (c).

Note that for a pinhole camera (ESD) and a point light source
(DSL), adirectly visible caustic has the form ESDDS*DSL, which
contains the substring DD and is thus samplable. Even if path
tracing with NEE cannot sample such a path (Figure 3a), a light
tracing algorithm could use next event estimation at the sensor to
sample this kind of path.

A key observation is that, as seen in Figure 3b and 3c, directly and
indirectly visible caustics can both be sampled if we regularise any
of the specular interaction after a diffuse vertex in the path [KD13].

3.3. Mollifier

A d-dimensional mollifier is a sequence of smooth positive distribu-
tions {¢;- (x) } where r denotes the mollification bandwidth [HA98],
and for which the support has to vanish as r approaches zero and
the sequence converges to a Dirac delta distribution. This is mathe-
matically formulated as follows [KD13]:

llsupp ()| o< O (1)
/Rd er(x)dx =1

Kaplanyan et al. also show that to achieve a consistent estimator in a
Monte Carlo framework, the bandwidth r, which goes to zero in the
limit, depends on the index of the sample n used for the integration
and must satisfy

= lin}) er(x)=6(x) (3

O(n™/4) <ry <O(1)
A valid sequence they propose is
rp= rorf’l with 1€ (0;1/d)

for a d-dimensional mollifier and an initial bandwidth r.
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(d)

Figure 4: Overview of the pipeline of a differentiable renderer. A
model f is used to predict some output data $ (a) (e.g a rendering
algorithm producing an image). We use the output of the model and
some additional training data (e.g a reference image) to compute
an objective function (b). Finally, the gradients of the differentiable
parameters are computed (c¢) and used to update the differentiable
parameters for the next round (d).

3.4. Differentiable Rendering

Given a single vector x that represents a desired set of scene pa-
rameters (e.g. material parameters, vertex positions, etc.) we are
interested in a model f , where we use the hat notation to indicate
that f is an estimator, that closely approximates the training data
y. This optimisation problem corresponds to a minimisation of the
error between the data y and the model f(x) = j:

Xopt = argflin L (f(x),y)

where £ is called the objective function or loss function (in the
context of data science). The loss usually describes some error
between the reference data y and the model f(x) but could in
practice represent anything.

Using a system like Redner [LADL18] or the one we use in our
work, Mitsuba 2 [NVZJ19], we can propagate derivatives across an
entire rendering engine using either manually derived derivatives
or automatic differentiation. Together with an appropriate objective
function we can formulate a typical gradient descent algorithm; a
gradient descent update for the set of optimisable parameters x at
iteration 7 is defined as

Xpp1 =X =7 - VL(Xy)

where 7; is the step-size (or learning rate) used at iteration 7. An
overview of a typical pipeline is illustrated in Figure 4.

4. Method

In practice, almost specular materials with roughness close to zero
introduce significant variance due to so-called near-singularities,
and can lead to problems similar to the one described in Section
3.2. Therefore, we want to distinguish scattering events on the con-
tinuum of roughness to handle those cases appropriately. Concretely,
a material with roughness close to zero should be handled similarly
to a perfectly specular material, and vertices with high roughness
should be considered diffuse above a certain threshold. To better

handle those cases, our regularisation uses the notion of accumu-
lated roughness which, intuitively, propagates the roughness present
in a path to the last surface interaction, and, in turn, increases the
likelihood of a successful connection to a light source. With this
approach, the roughening we introduce also depends on the path
prefix and automatically handles near-specular and perfectly specu-
lar interactions similarly. On the other hand, our approach does not
allow the regularisation of path solely formed of perfectly specular
vertices as no roughness can be accumulated in that case. Handling
this specific type of path is orthogonal to our work but could easily
be addressed using mollifiers of the Dirac distributions as was done
by Kaplanyan et al. [KD13].

We describe the mathematical tools to describe the accumulated
roughness in Section 4.1 and analyse the inherent bias-variance
trade-off that arises from using our regularisation in Section 4.3.
Section 4.4 presents a model to optimise our regularisation strategy
and its associated cost function, which exposes a single hyperpa-
rameter to control the desired variance threshold. Finally, we discuss
practical aspects of our model and demonstrate how the learnt pa-
rameters can be used in existing path tracers without further training.

4.1. Accumulated Roughness

Monotonicity For what follows, we define the partial order < to be
the elementwise inequality:

v <w iff v; <w; Vi with v,w e R"

where v; and w; denote the i-th component of v and w, respectively.
This allows us to specify a continuous function g : R” — R such
that g is monotone with respect to the partial order <, that is

vw=g()<gw) (C))

Accumulated Roughness Function For any path X € ;. of length
k we define the path roughness as

S @k-1) (&)

where the endpoints have no associated roughness and «; is the
roughness associated with the i-th vertex reflectance function. Now,
for the function g described earlier to represent an accumulated
roughness function, we add the following property:

g((07~~-,0svn))=vn (6)

which, intuitively, ensures that we only propagate the roughness
along n — 1 interactions. We can now define the regularised path
roughness as

az=a=(ai,..

a' =(ay,...,ax,a;_;) and a;_, =g(@) @)

which, by construction and the properties of g (Equation 4 and 6),
ensures that @’p_| > @y_1, and the prime notation denotes a
regularisation. In the rest of our work, we always refer to g as
the accumulated roughness function whereas allc—l represents its
output, i.e., the accumulated roughness for a path of length k.

Regularised Path Space Formulation We can now integrate our
regularisation into to the path space formulation (Equation 1) to
get the regularised measurement:

M=/Pm(f)du(i) ®)
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Figure 5: Application of the regularised next event estimation (Algorithm 1) to a Cornell Box featuring complex caustics. We render the scene
with varying attenuation factors y at 512 samples per pixel for different bias-variance trade-offs.

where m’ denotes the regularised measurement contribution func-
tion, and %', with a slight abuse of notation, represents the regu-
larised path, that is

X =(x0,....X)_.XK) 9

where xl’(_ | is simply the original vertex x,_; with accumulated
roughness a,’c_l. For the measurement contribution function, the
regularisation only affects the reflectance function at the (k —1)-th
vertex where we use the accumulated roughness al’(_l instead of the
original roughness ay_;. Concretely, the regularised reflectance
function is described as

,|pGmnxjxja lag),  ifj#Ek-1
p =

p(xj-1,xj,xj41 | @ _,), otherwise

forall 1 < j < k. Following classic Monte Carlo integration, we can
define the biased estimator of the regularised measurement M’ as
N-1 _r/zr
| m'(x7)
M =— ! 10
N 2 o) 1o

where the regularised path %] has associated probability density
function p(%;).

Attenuation Factor The bias introduced by the roughening depends
on the choice of accumulated roughness function. Therefore, we
parameterize the function g with an additional parameter 7y, the
attenuation factor, that controls the amount of bias introduced in
the regularised path. We propose to use the following function,
which satisfies the imposed continuity and monotonicity property

Algorithm 1 Regularised Next Event Estimation

Input: Attenuation factor y and sampled path (x, ... ,x;_1) with
associated path roughness @ = (@q, ... ,@r_1)
Output: Regularised Monte Carlo estimate of measurement M’
L ap_ < gla,y) > (Equation 11)
x;._, < update x_ with accumulated roughness @; _,
X < sample emitter position
m’(x") — W, (xo,x1)T(if’)Le(xk,x;<7]) > (Equation 2)
p(x’) « probability of sampling regularised path x’
return m’(x’)/p(x’) > (Equation 10)

[NV IS SR )

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

(Equation 4) for any value of y € [0,1]:
k=2
g@y) =g@y) =1-[-arp[ [(0-y-a)|] an
i=1

where we assume that the underlying scattering model’s roughness
can be mapped to the interval @; € [0, 1]. Intuitively, the attenuation
factor controls how much roughness is accumulated along a path
and confers g the following additional property:

lim g(@,y) = g(@,0) = ax_y
y—0

In other words, the bias is reduced to O as the attenuation factor
goes to zero. Note that the monotonicity property, together with
the guarantee that y € [0,1], implies that the function is also
monotonic with respect to y. Therefore, reducing the attenuation
factor will always decrease the bias in the rendered image. The
function above is not the only one to fulfil the properties introduced
in Equation 4 and 6; in the early stages of our work, we explored
other possibilities, such as the maximal roughness along a path or
adding roughness to the last scattering event based on the number
of previous bounces in the scene or the throughput of the path.
However, those strategies did not perform well when used as the
underlying model of the optimisation process presented in Section
4.4. Either because the model could not generalise well to arbitrary
scenes (also known as overfitting) or because the large number of
extra parameters needed to control the model became unpractical.
Our proposed accumulated roughness function has shown to be a
simple yet robust choice in that context.

Application to Path Tracing As Kaplanyan et al. remarked,
regularisation is best applied at next event estimation only to avoid
unnecessary bias [KD13] (Section 4.4). Only then is the type of
path known and fully formed. Hence, the only change required
to apply our regularisation strategy to a path tracer with NEE
is to update the BSDF with the accumulated roughness before
performing next event estimation and add the contribution of the
regularised path (Figure 6 and Algorithm 1). Figure 5 shows the
result of applying our regularisation strategy to a classic path tracer
using different attenuation factors.

A common basis for roughness The concepts introduced
so far are agnostic of the underlying type of roughness used by
materials. However, the optimal parameters for different roughness
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Figure 6: Path tracing with Regularised Next Event Estimation.
The original BSDF lobes at every intersection are shown in green,
in red and semi-transparent red the updated lobe for NEE using a
low and high vy value, respectively. The regularisation increases the
probability of performing a successful next event estimation for the
indirect illumination.

models can slightly vary and adhering to one type of roughness
for the optimisation avoids any discrepancy. In our work, we will
optimise for the widely used Beckmann micro-facet distributions on
which state-of-the-art multi-layered materials are based [GHZ18]
and conversion for measured BSDFs is readily available [DHI*15;
HKHDI16]. While Beckmann roughness is unbounded in theory,
we make the reasonable assumption that, for roughness above one,
the material can be considered diffuse during the optimisation.
Lambertian surfaces, on the other hand, are simply considered to
have a roughness of one to correspond to the ideal case of diffuse
(D) vertices in Heckbert notation. When materials are not isotropic,
a conservative approach using the minimum roughness across the
anisotropy axes works well. Note that our model is not restricted by
the type of roughness used, and we could optimise it for different
distributions such as the GGX distribution or the mean-cosine used
in the Henyey—Greenstein phase function. Further information
on how we handle multi-layered materials can be found in our
supplemental material.

4.2. Consistent Estimator

While our proposed regularised estimator is biased (Equation 12),
we can, if desired, turn it into a consistent one if we suppose that
mollifiers (Section 3.3) can represent every type of BSDF in the
scene. Under this assumption, we write the unregularised BSDF as
a mollifier ¢4, _, with mollification bandwidth ay_1, for any path
X € Py of length k with associated path roughness @. Furthermore,
we can write an offset variant of the accumulated roughness g from
Equation 11, that is

h@,y,ar-1) =g(@y) - ar-1

We recall that our proposed accumulated roughness function has
the property that lim,, _, g(@,7y) = ax_ and therefore

lim i(a@,y,@-1) =0
y—0
Finally, we can simply use the continuity of g, and therefore #,
together with Equation 3 to conclude that
lim ¢y, (x) = 6(x)
y—0
where ¢, (x) corresponds to the regularised BSDF controlled solely

by the attenuation factor y on which /4 depends. To ensure a consis-
tent Monte Carlo estimator we can therefore progressively reduce

the attenuation factor using the same sequence as proposed by Ka-
planyan et al., that is

(@, Yn,@p—1) = ho(@,y0,ax—1)n~" with A€ (0;1/d)

for a d-dimensional mollifier with initial bandwidth &g which de-
pends on the initial attenuation factor (. Nevertheless, reducing the
attenuation factor progressively has non-trivial implications on the
estimator’s variance [JHD20][Figure 17] and our work focuses on
the more general problem of finding good initial attenuation factors
that minimise the joint bias and variance of the estimator.

4.3. Bias Variance Trade-off

The estimator of a rendered image composed of N pixels can be
represented as a single vector f = [Mo MN_l]T where MJ- is
the j-th pixel’s measurement estimator. Moreover, if f is unbiased
E [ f ] = f. Similarly we can define the regularised estimator

Ay ¥ 4

=y My
where M’ is the regularised measurement estimator of pixel j
(Equation 8). To measure the bias and variance of the regularised

estimator we can compute the mean squared error (MSE) using the
following identity:

MSE(/) =E| ('~ f)?] = Var [ /7] + Bias? [ /']

The results from Figure 5 show that attenuation factors closer to one
introduce more error and progressively remove caustic paths from
light transport. To get an estimate of how much bias and variance
we introduce with our regularisation method, we compute the MSE
with respect to a reference render for different sample count and
varying attenuation factors (Figure 7). We observe that the target
number of samples per pixel directly affects the estimated optimal y
value that minimises the mean squared error. However, attenuation
factors close, but not equal, to zero seem to significantly decrease
the overall error across different sample count, which indicates that

) (12)

\ — MSE 8 spp
\ === Variance —— 32 spp
0.05 \ R 128 spp
\ 1024 spp
= 8192 spp

0.04 == 1000000 spp

0.03 4

Error

0.02

0.01 | , —

0.00

0.0 0.2 0.4 0.6 0.8 1.0
Attenuation factor

Figure 7: Empirical analysis of the variance-bias trade-off. We
compute the MSE and variance for different attenuation factors on
the Cornell Box scene from Figure 5. The estimator using one million
samples per pixels (spp) has no variance and its MSE therefore
solely represents the bias introduced by the regularisation.
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Figure 8: Recursive accumulated roughness. An illustration of our
proposed recursive accumulated roughness applied to a path of
length nine. The original BSDF lobes at every intersection are
shown in green, in blue, the virtual lobe that corresponds to the accu-
mulated roughness of the first five-bounce subpath (x1,x3,x3,X4,X5)
and in red, the final lobe used to perform next event estimation with
recursively evaluated accumulated roughness of the remaining sub-
path (x§,x6,x7,xg).

lower attenuation factors are probably the best way to achieve both
low variance and low bias at the same time. Note that while those
observations hold true in this specific scene, it is hard to predict
the attenuation factor’s behaviour on arbitrary scenes, and a simple
grid search as performed for this scene would not be practical.
Furthermore, we have considered only a single attenuation factor
for the whole light transport; as we will see in the next section,
increasing our model’s complexity can further reduce the overall
mean squared error achievable.

4.4. Optimised Path Space Regularisation

This section shows how we can further reduce the overall error
in rendered images by increasing our roughening model’s com-
plexity. We also describe how we use differentiable rendering to
tackle the optimisation problem at hand and, finally, introduce
the associated objective function that we use during gradient de-
scent to control our regularisation’s inherent bias-variance trade-off.

Path Space Dependent Attenuation The roughening scheme
proposed so far allows us to trade noise for bias only to a small
extent. When we fix the attenuation factor, the whole light transport
is affected in the same way, but variance distribution in the render
is generally not uniform: some parts of the scene may need more
or less roughening to achieve similar variance. We seek to increase
our current model’s complexity to account for such disparities and
treat them appropriately while staying lightweight and generalise
as much as possible. Therefore, it is crucial to keep the number
of optimisable parameters low and, ideally, scene independent to
allow the optimiser to find a suitable set of parameters.

We extend the attenuation factor to depend on the type of sampled
path and rewrite it as a function of the path roughness y(&). This
allows us to roughen every type of path independently, and we
reformulate Equation 11 as:

k-1
2@ =gr@=1-{(1-ap) [ [(1-7(@ ) (13)
i=1

where, for conciseness, we dropped g’s dependence on .
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Discrete path space classification To later optimise the at-
tenuation factors that control the accumulated roughness along a
path in practice, we need some form of discretisation of the path
roughness. We use a logarithmic scale on the roughness to better
approximate near-specular lobes: the origin of most of the variance
introduced and for which we need fine-tuning. On the other hand,
higher roughness values are already well handled using next event
estimation, and we discretise them more coarsely. Concretely, the
conversion from roughness « to the bin’s index i with quantization
level Q is defined as follows:

i=min({(2‘/a—1)-(Q+l)J, Q—1)

Using the described discretisation to learn an attenuation factor
for every possible path roughness, we would have to optimise a
total of Z{.‘:_; Q' parameters. Clearly, this poses a problem even for
reasonable path lengths and quantization level Q. Therefore, in our
implementation, we use Q =4 and learn attenuation factors only
for paths consisting of five scattering events at most (k = 6). Most
complex lightning effects, such as directly and indirectly visible
caustics, are included in that range.

Recursive Accumulated Roughness To handle higher-order
paths, we use a simple recursive heuristic that can be formulated
as a new accumulated roughness function gi (@) which, by
construction, still satisfies the monotonicity property:

N T itk <6
g (@) = (14)
gp_y4((@d,aq, ... ar_1)), otherwise

where @t = gg((a1, ... @s)) from Equation 7. Intuitively, the
recursion aggregates five-bounce subpaths until the remaining path
corresponds to a base case (k < 6). Figure 8 illustrates how the
method applies to a path of length nine.

Variance-aware Objective Function Assuming a total of
P= Z{f:_z] Q' optimisable attenuation factors, we stack them in a
single vector ¥ = [yg ... yp_11T. We also write the regularised
estimator’s dependence on the attenuation factors explicitly as
f’(y) (Equation 12) and compactly formulate the optimisation
problem we are trying to solve as follows:

Yop = argmin £ (7). ) (15)
Y

For the optimisation, we use the state-of-the-art Adam optimiser
[KB14] with the default parameters and a learning rate =5 - 1074,
Our loss function uses a mean absolute percentage error (MAPE)
which reduces the impact of outliers (fireflies) and allows the op-
timiser to automatically adapt to different brightness levels in the
scene more robustly. To let the optimiser focus on the variance
reduction we also add an extra term that solely accounts for the
estimator’s variance. Our loss function can thus be formulated as
follows:

L(F).1) = MAPE(F' (). f)+B-Var (P ) (16)

where the hyperparameter 3 gives control over the acceptable level
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Figure 9: Scenes used during the optimisation process. In addition to the scene from Figure 5, we use six additional scenes featuring complex

caustics and varying glossiness to train our model.

of noise and the variance term is estimated using the regularised
estimator’s sample variance.

Training Set In addition to the scene in Figure 5, our train-
ing set comprises six scenes that aim to represent hard-to-sample
paths, such as directly and indirectly visible caustics for different
roughnesses and path lengths (Figure 9). The types of paths
represented in the training set, for which we want to learn accurate
attenuation factors, are typically found even in more complex
scenes. As mentioned earlier, we only learn y for paths of length
k < 6. If we reduce the maximal path length to k < 6 we start
missing interesting caustic paths, while increasing it beyond k£ = 6
does not show any notable improvements and drastically increases
memory requirements. As our model is not geometry-aware, the
scenes are not required to be significantly different to learn good
parameters during optimisation. However, it is important that the
desired hard-to-sample paths are present in the training set. The
ring scene, for example, was used to ensures that both visible and
indirectly visible caustics are present across different range of
glossiness.

Optimisation While the number of scenes we are training
on can seem low, our model only cares about the type of sampled
path for a given pixel contribution. Every attenuation factor is
responsible for some partitioning of the path space, and the
learning process effectively overfits each optimised y parameter to
a specific type of sampled path roughness. Consequently, during
the optimisation process, all the entries in y are independent and
can be updated simultaneously at every gradient step. In the context
of deep learning, a similar, but not equivalent, type of model
referred to as a mixture of experts exists [ME14]. The main idea
consists of splitting a problem into smaller homogeneous problems
for which the experts are responsible for finding optimal solutions.
In our model, each overfitted attenuation factor can be seen as an
expert for a specific type of path roughness and allows our model
to generalise to a large variety of scenes; we train the model on
the type of sampled path rather than the lighting or geometric
information which can significantly change from one scene to
another. To perform a gradient descent optimisation and minimise
the loss function described in Equation 16, we need to fix both
the number of samples per pixel and the beta parameter used;
together, they fix the noise level for which we want to optimise y
(Equation 15). The learning process needs roughly ten thousand
steps to converge for any value of 3, and takes about twelve hours
on a Titan RTX GPU.
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Figure 10: Training and validation using the mean loss over 32 by
32 pixels wide crops. The bottom left plot depicts the error for every
iteration of the gradient descent on two crops from the training
data set (straight lines) and two crops from the validation data set
(dashed lines). In this example, we use 1024 samples per pixels
for the optimisation and we fix = 0.001 for the loss. The insets
correspond to the rendered crops at the last iteration (10°000).

Validation Figure 10 shows how the optimiser, starting with
a uniform initial guess of y = 0.5, progressively reduces the error
until convergence during training and validation. This also shows
empirically that our model robustly handles scenes with geometry
and materials that greatly differ from our training set. Note that the
scenes evaluated in Section 5 use the same set of learnt parameters
obtained from the described training set and, therefore, further
contribute to validate our model.

5. Implementation and Results

In this section, we present several results of applying our regular-
isation strategy to path tracing estimators and important consider-
ations regarding the generalisation of our model. We compare all
the results for two sets of optimised parameters to demonstrate our
method’s inherent tradeoff between variance and bias; we choose
£ =0.001 and B8 =0.05 (Equation 16) to represent a relatively low
and moderate tolerance to bias, respectively. To analyse the percep-
tual error introduced by our regularisation, we use the ALIP error,
which approximates the difference perceived by humans when alter-
nating between a rendered image and a corresponding ground truth
[ANA*20]. In addition to the result presented in this section, the
supplemental video contains real-time visualisations of our optimi-
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SPACESHIP DRAGONS RINGS
1280x960 5 MIN 1280x780 1 MIN 1280x780 5 MIN

— SPACESHIP
PATH TRACING HLIP OURSs (NAIVE) ALIP OuRs (5=0.001) + CONVERGED Ours (B3=0.05)
1483 spp 1251 spp 1181 spp

(Full Res) 0.03068 0.02928 0.03042 0.01840 0.03214 0.02283
— DRAGONS
PATH TRACING ALIP OURSs (NAIVE) ALIP OuURs (5=0.001) ALIP + CONVERGED OuRs (B3=0.05) ALIP + CONVERGED

232 spp 198 spp 182 spp 179 spp

(Full Res)

— RINGS

PATH TRACING ALIP OURS (NAIVE) ALIP ALIP + CONVERGED

1910 spp 1692 spp 1580 spp 1560 spp

OURS (5=0.001) ALIP + CONVERGED Ours (3=0.05)

0

(Full Res)

Figure 11: Equal time comparison between regular path tracing and path tracing with regularised NEE for two sets of learnt parameters.
We compare three path-traced scenes containing hard-to-sample paths against our extended path tracing algorithm with regularised next
event estimation and a naive version that uses a constant non-optimised attenuation factor. For each technique, we indicate the mean FLIP
error on the full resolution image. For our method, we also compute the FLIP error on the converged image to visualise the bias introduced.
Our method achieves consistently lower variance for a small systematic error compared to regular path tracing. The slightly more aggressive
roughening (B = 0.05) further reduces the variance but introduces more significant visible bias.
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sation process and animated versions of the beach scene depicted
in Figure 1 that demonstrate the temporal stability of our method.

5.1. Optimised Path Space Regularisation for Path Tracing

Adding our regularisation to a path tracer is straightforward; to
implement the regularised next event estimation, we only need
to store the materials’ original roughness along a path into an
adequate data structure and query the accumulated roughness of the
subpath to temporarily change the roughness of the vertex where
we perform next event estimation (Line 1 and 2 of Algorithm 1).

Memory The memory requirements of our method are quite
low thanks to the discrete path space classification and our
recursive formulation of the accumulated roughness (Equation 14);
with a discretisation level of four and aggregating five-bounce
subpaths (k = 6), every hyperparameter S we optimise for requires
us to store a total of P = Z{.‘:_zl Q' = 1360 attenuation factors
(5.216 kB).

Multiple Importance Sampling When using our regularised
next event estimation with multiple importance sampling (MIS)
[VG95b], we must ensure that other techniques are also evaluating
the regularised path. While this can seem a minor issue at first, after
using the regularised BSDF for the contribution of a complete path
of length k, we can no longer use the same regularised BSDF to
sample a path of length k£ + 1 without introducing additional error
in the estimator, a standard optimisation among path tracers in
absence of regularisation. A simple way to avoid any unnecessary
bias is to construct the path prefix of length k — 1 using the unbiased
BSDF while only taking into account contributions from the
complete regularised path of length k, that is, the MIS weighted
contributions of the regularised BSDF and regularised NEE. We
use this solution in all the results that use our regularisation.
However, if speed is critical, regularising every vertex along a path
and reusing the regularised BSDF to sample the path prefix of
length k£ — 1 achieves close to equal performance to classical path
tracing while only adding a small additional error compared to
our proposed solution. For instance, an ESDSL path (in standard
Heckbert notation) is regularised identically both when reusing
and not reusing the regularised BSDF since we never alter the
first bounce, the second bounce already has maximal roughness,
and we effectively only regularise the last specular bounce before
connecting to a light source.

Results Analysis We compare our regularised path tracer
against classical path tracing with next event estimation and a
naive solution corresponding to an unoptimised version of our
method. The naive solution uses a constant y ~ 0.01 for each
type of sampled path and corresponds to the attenuation factor
that our optimised regularisation with 8 = 0.001 uses for a path
roughness @ = (0.0,1.0), i.e. a caustic arising from a perfectly
specular material. The naive strategy is slightly faster as it does not
depend on the type of sampled path and can evaluate Equation 11
on the fly. We perform equal time comparisons between three
different scenes (Figure 11). The SPACESHIP scene is illuminated
by an environment map containing a strong directional sun and a
small area light source inside the cockpit. As shown in the green

insets, this results in challenging SDS paths and long specular
chains inside the spaceship that are extremely hard to sample for
path tracing. Our method samples these challenging paths robustly
and starts resolving paths that path tracing has not encountered
yet. The converged crop’s ALIP error also shows how our method
keeps the perceptible error extremely low even in regions where
regularisation was applied. In the orange insets, we can observe
that the bias introduced can sometimes be hard to notice by
looking at two images side by side, and the HLIP error allows us to
identify the systematic error better. The DRAGONS scene is a much
simpler scenario for simple path tracing; however, our technique,
while less effective in general, can still regularise unexpected long
specular chains arising on the glossy plastic border of the mirror or
help reduce variance on the two reflected glass hemispheres. The
RINGSs scene shows the benefit of using our regularisation when
sampling both visible and indirectly visible caustics. A significant
amount of variance is not related to the directly visible caustic but
corresponds to longer glossy chains, which our optimised model
will automatically roughen more.

5.2. Comparison with Specular Manifold Sampling

Specular Manifold Sampling (SMS), by Zeltner et al. [ZGJ20],
addresses the problem of caustic paths due to perfectly specular
interactions. While their technique is unbiased, the Newton-based
solver used to find an explicit connection to a light source through
a specular interface can be subject to numerical instability and rely
on suitable surface derivatives to converge. They provide an inter-
esting two-stage manifold walk improvement for normal-mapped
surfaces that aids in that regard. However, real geometry can still be
challenging and requires careful selection of the solver’s parame-
ters to achieve good performance and not run into ill conditions. We
compare our regularisation to their unbiased method in the PooL
scene shown in Figure 12. We found that the following choice of
parameters for their solver achieved the best result for this particu-
lar scene: we set the solver’s threshold and uniqueness threshold for
caustics to 1e-6, the maximal number of trials to one million and the
maximal number of iterations of the solver to 20. We observe that
SMS is extremely powerful at finding sharp caustics but can suffer
the overhead of costly manifold walks in occluded regions or when
the solver does not converge to a solution and falls back to BSDF
sampling. Note that our technique is biased and trades some error to
increase the rendering algorithm’s robustness, whereas SMS aims
to find the exact solution to the caustic problem. On the other hand,
SMS’s biased variant requires a thoughtful choice of the maximal
number of trials not to suffer from excessive energy loss or per-
formance drop. Further comparisons for different water depths and
their unbiased approach are available in our supplemental material.
While SMS can, in theory, handle rough surfaces, it is generally not
advised since classical path tracing, and therefore our regularised
path tracer will rapidly outweigh the costly offset manifold walks as
the surface’s roughness increases.

5.3. Application to Path Guiding

Our method is remarkably unintrusive, and we can combine it with
most path guiding techniques without any additional consideration
than the one discussed for path tracing. All the results that use path
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PooL

1920x1080 SMS (UNBIASED) 10 MIN OURS (B=0.001) 10 MIN OURS (B=0.05) 10 MIN

+ CONVERGED OuRs (B3=0.05) ALIP + CONVERGED

PaTH TRACING ALIP SMS (UNBIASED) ALIP OURS (5=0.001) ALIP

1143 spp 1156 spp

(Full Res)

Figure 12: Equal time comparison between regular path tracing, Specular Manifold Sampling (SMS) and path tracing with regularised
NEE for two sets of learnt parameters. While Specular Manifold sampling is unbiased, our optimised regularisation with 3 = 0.001 closely
competes in finding caustic paths and achieves overall lower mean FLIP error for equal render-time. Moreover, our method with 3 = 0.05
achieves drastic variance reduction at the cost of a more significant systematic error.

EYE

960x540 REFERENCE (GUIDING) 9 18m 125 + OURS (8=0.001) 8 12m 41s + OURS (8=0.05) 6H 46M 58s

Figure 13: Regularisation in complex scenes. The scene features a complex double refractive caustic through the cornea of an eye, multi-
layered materials and volumetric light transport for the skin. Applying our regularisation can still reduce render-time in that context and
maintains low visible error.
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BEACH
1920x1080

PATH GUIDING 64 spp

PaTH GUIDING

OuRs (3=0.001)

0.05)

OuRs (B

Figure 14: Fixed sample count comparison between path guiding
and our regularised path guiding. Adding our regularised next event
estimation to path guiding algorithms enables finding otherwise
hard-to-sample paths and can significantly speed up the learning of
guiding distributions.

guiding are based on the method from Miiller et al. [MGN17], which
has been widely adopted in the movie industry. We believe that our
regularisation can be used with any recent guiding strategy as we
only regularise next event estimation, which is usually orthogonal to
the problem guiding addresses. Figure 14 demonstrates the benefit
of using our regularisation in the context of path guiding. At 64
samples per pixel pure path guiding has not yet been able to learn
accurate guiding distributions in the entire scene, especially in the
presence of intricate geometry resulting in noticeable artifacts. Our
regularisation helps finding contributions more consistently and
therefore also improves the learning process. The reduced variance
of the estimator can lead to significant performance gain as can be
seen in Figure 1.

5.4. Perceived Error Discussion

The error added by our regularisation has the advantage of being
imperceptible under smooth illumination. Under high-frequency
illumination or at shadow boundaries, the blur introduced by our
method is conceptually similar to adaptively increasing the size
of light sources depending on the material’s roughness. Therefore,
it results in plausible and hardly identifiable bias without directly
comparing to the reference, as seen in Figure 13. In concert with
the ability to sample complex paths and to only introduce bias when
the estimator’s variance would be significantly higher, we believe
our regularisation is a robust addition to any path tracer.

5.5. Limitations and Future Work

Our regularisation method’s limitations are directly related to the
complexity of our model and its ability to generalise. While the ac-
cumulated roughness is independent of the path roughness, we have
no information related to the scene’s geometry. We can observe this
limitation in Figure 1, where the more aggressive roughening with
B =0.05 has a low bias in the shallow water, but the blur becomes
noticeable as the water becomes deep. Our model has no way of

accommodating the two different cases. We mitigate those effects
by ensuring sharp caustics in our training set, guaranteeing that
our objective function might penalise even a slight regularisation in
the corresponding path. Another interesting aspect for future work
would be integrating path guiding frameworks into the optimisation
process and experiment with adaptive reduction of the mollifier
bandwidth in conjunction with our consistent formulation of the
accumulated roughness to further reduce bias without increasing
the variance of the estimator dangerously.

6. Conclusion

In this paper, we introduce the concept of accumulated roughness
along a path and how we can use it as a regularisation strategy
for next event estimation. We further extend the accumulated
roughness with a path space dependent attenuation factor which
enables us to control the inherent trade-off between bias and
variance. On this basis, we devise a model whose objective
function directly controls the desired level of tolerated noise using
a single hyperparameter and use differentiable rendering to train
our model on scenes featuring complex light transport and surfaces
with varying glossiness. Our method is temporally stable, extremely
simple to add to any path tracer, and shows great robustness in
complex scenes where it consistently helps reducing the variance
of estimators while maintaining a low perceptual error. Finally, we
show that adding our regularisation to a regular path tracer enables
us to compete with state-of-the-art techniques such as Specular
Manifold Sampling while achieving similar or better convergence
in the presence of arbitrary surface roughness or complex geometry.
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