
CHAPTER 35

RAY TRACING OF BLOBBIES
Manuele Sabbadin and Marc Droske
Weta Digital

ABSTRACT

Particles are widely used in movie production rendering for various different
effects. Blobbies (aka metaballs) are a very useful primitive to bridge the
intermediate regime between the bulk of a fluid and fast-moving spray
particles as well as providing geometric variation to droplets. The use of
anisotropy allows one to represent thin line structures better than classic
isotropic shapes. Tessellation of such fine geometric structures is prone to
geometric artifacts, especially under strong motion blur, which may heavily
distort the surface during the shutter or because topology changes can’t be
represented well. Intersecting rays with the isosurface analytically has
robustness and precision advantages. Operating on the original
representation provides highly accurate spatial and temporal derivatives that
are useful for filtering specular highlights. In this chapter we describe some
algorithmic tools to robustly and efficiently intersect blobby surfaces
supporting anisotropy and higher-order motion blur.

35.1 MOTIVATION

High-quality rendering of special effects elements (see Figure 35-1) requires
robust and accurate representation of geometric details at various different
scales. Elements such as fine spray can be represented by volumes and
particles, whereas for the bulk of a fluid, morphological surfacing techniques
can successfully be applied [8]. High-frequency details of implicit surfaces,
especially under motion, pose challenges for tessellation-based techniques
due to distortions and topology changes, which might require a large amount
of motion steps to mask and special care to avoid artifacts due to potential
self-intersections. Furthermore, high curvature and temporal variation of the
normal cause specular highlights to be challenging to resolve. Here,
spatial [6, 11] and temporal [10] antialiasing techniques yield very good
results. These rely on surface derivatives to estimate the normal variation to
translate into Beckmann roughness and to compute ray differentials. In

551A. Marrs, P. Shirley, I. Wald (eds.), Ray Tracing Gems II, https://doi.org/10.1007/978-1-4842-7185-8_35
© NVIDIA 2021

https://doi.org/10.1007/978-1-4842-7185-8_35

RAY TRACING GEMS II

Figure 35-1. Blobbies are largely used in visual effects to represent splashes of water. Anisotropy
of the particles allows one to preserve the correct shape of the thin walls and lines of water. In this
image 1,221,370 blobbies represent an exploding bowl of water.

particular, we rely on computing up to second higher-order and mixed
derivatives to be computed reliably, which can be a challenge on its own.

Blobby surfaces, as first introduced by Blinn [1], offer an analytic definition of
an isosurface based on the combination of kernel functions around given
particles (see Figure 35-2). The resulting surfaces are smooth and are nicely
and compactly represented by points with some parameters. Motion can be
expressed in a very natural way in a Lagrangian formulation. However, in their
basic form the resulting surfaces are more suitable for molecular
visualization than for fluids. Their wobbly appearance makes it difficult to
represent thin structures. The definition of blobbies extends, however, easily
to anisotropic surfacing [12], which overcomes these issues and makes them
a compelling modeling representation for various forms of splashes and fluid
droplets.

Because the surface is implicitly defined by particles that interact with each
other, finding the intersections both robustly and efficiently requires some
extra care. We describe some ingredients for using ray traced blobbies in
practice:

> Revisit anisotropic blobby particles.

> Bounding volume hierarchy (BVH) traversal tailored to interval
refinement methods [9].

> Computing tight bounds of individual blobby functions.
552

CHAPTER 35. RAY TRACING OF BLOBBIES

Figure 35-2. Blobby field from three anisotropic particles with corresponding isosurface (green).
With each particle we associate an inner sphere (orange) and a bounding sphere (blue), the
smallest sphere that contains the support region.

35.2 ANISOTROPIC BLOBBIES

A blobby particle Bi is represented by an implicit field ψi : [t0, t1]× Rd → R
defined on time in [t0, t1] and space. A set of blobbies defines an implicit field
ϕ(t, x) in the following way:

ϕ(t, x) =
∑
i

ψi(t, x) – T, (35.1)

where T is a threshold parameter that influences the blending of the different
blobbies (see Figure 35-2). To visualize ϕ(t, x), we are interested in the
isosurface defined byM(t) = {ϕ(t, ·) = 0}.

We focus on the classic blobby variant

ψi(t, x) =

(
1 – R–2i ‖x – xi(t)‖

2
)3

‖x – xi‖ < Ri,

0 otherwise,
(35.2)

where xi(t) defines the center of the particle at time t and Ri is the radius of
the influence region. We denote with Ri the bounding radius of the blobby Bi.

This can easily be generalized to anisotropic particles by writing it in the form

ψi(t, x) = k
(
g
(
x – xi(t), x – xi(t)

))
, where k(y) = (1 – y)3 (35.3)

and g is a scalar product gA(u, v) = 〈Au,Av〉 that encodes the anisotropy and
size. In particular, for a unit basis b0,b1,b2 and radii R0,R1,R2, we can set

553

RAY TRACING GEMS II

Ai = diag(1R0
, 1
R1
, 1
R2
) · [b0 b1 b2]T. The values Ri can be easily chosen depending

on T such that the isosurface of an isolated blobby describes an ellipsoid with
the prescribed lengths r1, r2, r3 of the axes. In the case of anisotropic
particles, the bounding radius is defined as the maximum of {R0,R1,R2}. We
also define ri, the inner radius of the blobby Bi, as the radius of the largest
sphere that is contained in the isosurface, if Bi is not influenced by any other
blobby. It is equal to the minimum value of {r1, r2, r3}.

Expressions like the shape operator S, the temporal derivative of the normal,
or the derivative of the intersection distance (see [10]) are easily obtained
through basic derivatives of the level set function such as ∂tϕ,∇x ϕ, Hessϕ,
and ∂t∇x ϕ. In particular, the shape operator corresponds to the matrix
representation of the Weingarten map:

S =
1

‖∇xϕ‖
P[∇xϕ] HessϕP[∇xϕ], where P[v] = (id – v⊗ v), (35.4)

which is useful to compute normal derivative in direction v as DvN = S v.

Setting gi(t, x) = 〈Ai(x – xi(t)),Ai(x – xi(t))〉, we have, for example,

∂t∇xψi(t, x) = k′′(gi(t, x)) ∂tgi(t, x)∇xgi(t, x) + k
′(gi(t, x)) ∂t∇xgi(t, x), (35.5)

where

∂tgi(t, x) = –2
〈
A(x – xi(t)),A ∂xi(t)

〉
,

∇xgi(t, x) = 2ATA(x – xi(t)),

∂t∇xgi(t, x) = –2ATA ∂txi(t).

(35.6)

Motion blur is expressed simply as a parametric form of the center xi(t)
depending on t. The equations can easily be extended to support a
time-dependent metric A(t) to represent, for example, oscillations and spin.

35.3 BVH AND HIGHER-ORDER MOTION BLUR

We use a classic BVH to store blobbies and to identify particles whose
supports overlap with a ray segment. Each blobby is represented as a sphere
inside the BVH (even for the anisotropic case, as we will discuss in
Section 35.4). For a generic blobby Bi, we store its bounding radius Ri and the
inner radius ri. To tackle the motion of each blobby, we also store its velocity vi
and acceleration ai at time t0. This will allow us to represent higher-order
motion blur, instead of just a linear motion. During the construction of a BVH,
it is important to create bounding boxes as tight as possible to the actual

554

CHAPTER 35. RAY TRACING OF BLOBBIES

B1

B2

B3

B12 (t)
B23 (t)

B(t)

Figure 35-3. Higher-order motion bounds: Given the bounds B1, B2, and B3 that contain the
control points of the input curve, B12(t) = (1 – t)B1 + tB2 and B23(t) = (1 – t)B2 + tB3 are bounds of
the two control points of the first iteration of the de Castlejau interpolation. Eventually,
B(t) = (1 – t)B12(t) + tB23(t) contains the curve evaluated at time t.

geometry. When objects are moving, this task becomes trickier. The simplest
solution, using a bounding box that contains the entire trajectory of the object,
will become inefficient under fast motion as bounds for a specific ray time
become loose. A better option is to exploit velocity and acceleration to
interpolate bounds in time on leaf nodes and to propagate this motion higher
up the tree.

Linear motion blur can easily be handled by linearly interpolating the
bounding boxes during traversal according to the ray time [3], which yields
much tighter bounds than growing the bounding boxes to contain the entire
motion path. Because de Casteljau’s algorithm is an iterated version of linear
interpolation, this can easily be extended to higher-order Bézier interpolation:
the control points can be used to define control bounding boxes that are
Bézier-interpolated during the traversal (see Figure 35-3).

Therefore, we only need to convert the incoming parabola given by velocity v
and acceleration a defined on [0, 1] as

xi(t) = pi(0) + tvi +
1
2
t2ai (35.7)

into Bézier form:

Bi(t) = (1 – t)2Pi,0 + 2(1 – t)tPi,1 + t
2Pi,2. (35.8)

The change of basis is given by Pi,0 = xi(0) = pi, Pi,1 = 1
2vi + Pi,0 and

Pi,2 = 1
2ai + vi + pi = xi(1). From these the bounds of the control points for each

555

RAY TRACING GEMS II

leaf node are obtained, which defines three Bézier control bounding boxes.
Again analogously to the linear interpolation case, the control bounding boxes
are aggregated up toward the root.

35.4 INTERSECTION METHODS

We define r = (o,d) as the ray with origin o, direction d, and limits [smin, smax],
parameterized as r(s) = o + sd.1 We want to determine an intersection
distance sint > 0 that is the minimum s ∈ [smin, smax] such that ϕ(t, r(sint)) = 0.
We indicate the hit point with h. For an interval I (along the ray) in which
ϕ(t, r(s)) assumes both positive and negative values and is monotone, we can
apply any root-finding method to find h within that interval. We can consider
the bounding box enclosing the entire set of blobbies and intersect it with the
ray r, finding a first guess for such an interval. Then, bisection can be applied
iteratively until it satisfies the above-mentioned conditions. This approach
works in theory, but it is not feasible in practice, as the amount of blobbies
that define the implicit field ϕ can be very large. This means that every time
we want to evaluate ϕ(t, x), we need to sum up the contribution from all the
blobbies. Any root-finding algorithm would require ϕ(t, x) to be computed
more than once, at different points along the ray. Given the finite support of
the kernel function, only a few of them will contribute to the value ϕ(t, x).
Naturally, we can restrict the number of blobbies we use to those whose
bounding boxes intersect r. Even so, we are potentially considering a large
amount of blobbies that are too far away from h to contribute to its
computation. Our aim is to find the set of blobbies A required by the
root-finding algorithm (i.e., it contains all the blobbies Bi for which ψi(t,h) 6= 0)
while discarding as many as possible.

The main steps of our algorithm are the following:

1. Determine A and I0 ⊆ [smin, smax], which is our first guess for the
interval I.

2. Refine the interval I0 iteratively, proceeding in front-to-back order, until
we obtain an interval In that contains exactly one root.

3. Find the root inside the interval In.

We will focus on the first two steps, as the third consists of using a standard
iterative root-finding algorithm.

1We use s to parameterize the ray to avoid conflict with the time denoted by t.

556

CHAPTER 35. RAY TRACING OF BLOBBIES

35.4.1 DETERMINE THE ACTIVE BLOBBIES

As we have previously seen, given a blobby Bi, we can define two different
radii on it: The first one is the bounding radius Ri, which refers to the region of
influence of Bi (i.e., ψi(x) = 0 when ‖x – xi‖ > Ri). The second radius is the
inner radius ri, which represents the radius of the largest sphere that is
contained in the isosurface of Bi if not influenced by any other blobby. We
associate a sphere to each of them: respectively, the bounding sphere Sbound,i
and the inner sphere Sinner,i. Each time we intersect the ray r with Bi, we
obtain four values: Si[min], Si[max], si[min], and si[max]. The first two
quantities are the values of s that lead to the two intersections on the
bounding sphere Sbound,i, while the latter two refer to the intersections on the
inner sphere Sinner,i. It is worth noting that we check for intersections against
spheres even for the anisotropic case because the intersection test is
computationally faster compared to a ray-ellipse test. As we need to be
conservative in our criteria to discard a node, we set Ri to be the major radius
of the bounding ellipse and ri to be the minor radius of the inner ellipse.

To determine which blobbies we should consider and determine the interval
I0, we have to distinguish two different cases: if the ray is pointing inside
(such as interior reflection or transmitting inward) or outside the surface. For
both cases, we avoid adding a blobby Bi to the set A if the ray r does not
intersect Sbound,i. Moreover, we traverse our BVH in a way that prioritizes the
nodes closer to the ray origin, as shown in the following listing:

1 void VisitChildren(Stack& S, Ray r, Node n) {
2 float t0 = r.GetNearHitpointBounding(n.Child[0]);
3 float t1 = r.GetNearHitpointBounding(n.Child[1]);
4

5 int furthest = 0;
6 if (t1 > t0) furthest = 1;
7

8 if (r.IntersectBounding(n.Child[0]) && r.IntersectBounding(n.Child[1]))
{

9 S.Push(n.Child[furthest]);
10 S.Push(n.Child[1 - furthest]);
11 return;
12 }
13 if (r.IntersectBounding(n.Child[0]))
14 S.Push(n.Child[0]);
15 if (r.IntersectBounding(n.Child[1]))
16 S.Push(n.Child[1]);
17 }

TRACING TOWARD FRONTFACE

When we hit the isosurface from the outside, we can state that if we hit the
inner sphere Sinner,i of the blobby Bi, we don’t need to add to A any node Bj

557

RAY TRACING GEMS II

that is farther from the origin of r and whose bounding sphere Sbound,j does
not intersect Sinner,i. This is simply motivated by the fact that the blobby Bj

cannot influence in any way the implicit field around the hit point (and cannot
cover it because it is farther). This can be achieved by a simple check: we can
discard Bj if Sj[min] > si[min]. The following listing shows a simple
implementation of the method to find the closest hit if the ray origin lies
outside the isosurface; we use a stack to keep track of the traversal’s state:

1 // The BVH B stores all the blobbies.
2 void IntersectFromOutside(Ray r, Set A) {
3 Stack S;
4 S.Push(B.root);
5 float tmax = FLT_MAX;
6

7 while (!S.IsEmpty()) {
8 Node n = S.Pop();
9 // If the bounding box is farther than the hit point, it cannot

influence it.
10 if (r.GetNearHitpointBounding(n) > tmax)
11 continue;
12

13 if (n.IsLeaf()) {
14 if (r.IntersectInner(n)) {
15 // t defines the intersection along the ray.
16 float t = r.GetNearHitpointInner(n);
17 tmax = min(tmax, t);
18 }
19 if (r.IntersectBounding(n))
20 A.Insert(n);
21 }
22 else
23 VisitChildren(S, r, n);
24 }
25 }

TRACING TOWARD BACKFACE

When we hit the isosurface from the inside, we cannot use the same
argument we used in the previous case. In this case, when we hit the inner
sphere Sinner,i, there is no guarantee that nodes that satisfy the condition
Sj[min] > si[min] won’t contribute to determining the hit point h. Let’s
imagine, for example, a chain of intersecting blobbies. If we start the ray r
from one side of the chain, we have to traverse all the blobbies to detect the
exit point (see Figure 35-9). In this scenario, we can use a weaker condition
that allows us to discard part of the blobbies along the ray: Let Bi be the node
in A with the largest Si[max]. If all the nodes Bj that we still have to visit
satisfy Sj[min] > Si[max], we can stop collecting nodes, because we must have
exited in between. There is a crucial difference to the previous case, in which
we could discard the single blobby and continue the visit the other nodes on

558

CHAPTER 35. RAY TRACING OF BLOBBIES

the stack. However, in this case we can only ascertain when the entire visit
can be terminated, but it can’t be determined whether a specific particle can
be discarded. This is due to the fact that the entries in our stack are not
ordered by S[min]. Hence, a node that we will visit later during the traversal
could make the current node active, even if it is actually too far away to
contribute to the hit (see Figure 35-9). We tested this approach on the data set
in Figure 35-13 and compared to a version of the algorithm where we collect
all the blobbies along the ray. The proposed technique gives a speedup of 24%
for the render time.

One could argue that we should use a heap data structure instead of a stack
to support the visit, to allow the algorithm to consider the closest entry at
each iteration and to be able to stop the visit earlier. It is indeed an option that
would allow for some optimizations, but the trade-off of the added cost of
updating the heap might not be worth it.

The following listing shows a simple implementation of the method to find the
closest hit if the ray origin is located inside the isosurface. Note that, to check
if we can terminate the traversal, each entry of the stack now saves the
minimum distance from the ray origin at the moment of its insertion.

1 // The BVH B stores all the blobbies.
2 void IntersectFromInside(Ray r, Set A) {
3 Stack S;
4 S.Push(B.root);
5 float tmax = FLT_MAX;
6 bool hasToInitTmax = true;
7

8 while (!S.IsEmpty()) {
9 if (S.Top().MinDistanceFromOrigin > tmax)
10 return;
11

12 Node n = S.Pop();
13

14 if (n.IsLeaf()) {
15 if (r.IntersectBounding(n)) {
16 if (hasToInitTmax) {
17 tmax = r.GetFarHitpointBounding(n);
18 hasToInitTmax = false;
19 }
20 else
21 tmax = max(r.GetFarHitpointBounding(n), tmax);
22 A.Insert(n);
23 }
24 }
25 else
26 VisitChildren(S, r, n);
27 }
28 }

559

RAY TRACING GEMS II

B1 B2

B3 B4

N1

N2

N

B1 B2 B3 B4

N1

N

N2

Figure 35-4. Left: to better explain the different cases that we have to consider when creating the
setA, we will use a data set made by four blobbies, whose bounding spheres Sbound,i intersect in
pairs. In green we represent the isosurface. For each blobby, we used an opaque color to
represent the inner sphere and a semitransparent one to represent the bounding sphere. Right:
The BVH stores the nodes in a way that B1 and B2 share the same parent node N1, while B3 and B4

share the same parent node N2.

We have to update the method VisitChildren() to push the value
MinDistanceFromOrigin onto the stack, with each new entry. The value to
push is the minimum between the old minimum distance
(MinDistanceFromOrigin of the current top of the stack) and the distance to
the node that we are going to push. For a generic node n, it works in the
following way:

1 float minValue = S.Top().MinDistanceFromOrigin;
2 S.Push(n, min(minValue, r.GetNearHitpointBounding(n)));

EXAMPLES

In the following we provide a graphical representation to illustrate how the
algorithm works. We will use the blobbies configuration in Figure 35-4 and
change the ray origin and direction to present the most common situations.
Figures 35-5 to 35-7 consider a ray hitting from outside the isosurface,
whereas Figures 35-8 to 35-10 show a ray whose origin is inside it. In all the
figures we will represent with a dotted contour the blobbies that are not part
of the set A at the end of the traversal (for example, node B4 in Figure 35-6).

35.4.2 INTERVAL REFINEMENT

From the set A we can easily find the interval I0 = [min0,max0]: we simply
have to intersect r against all the blobbies in the set and compute the
boundaries of the interval in the following way:

min0 = Min(Si[min]) ∀Bi ∈ A,

max0 = Max(Si[max]) ∀Bi ∈ A.
(35.9)

560

CHAPTER 35. RAY TRACING OF BLOBBIES

B1 B2

B3 B4

N1

N2

r h

Figure 35-5. The simplest case happens when the ray intersects an inner sphere Sinner,i and no
other sphere Sbound,j intersects both the ray and Sinner,i. In the example, r does not intersect N1,
which is discarded immediately, with all its children. It first intersects Sinner,3 and adds the blobby
to the setA. When r intersects Sbound,4, the test S4[min] > s3[min] succeeds, so we can discard
it. The only active node is B3.

B1 B2

B3 B4

N1

N2

r h

Figure 35-6. When we intersect B1, we don’t intersect its inner sphere. In this case we cannot set
an upper bound for the future intersections, as we don’t know if B1 will contribute to determining
the hit point or not. Because we are visiting N1, the next blobby we process is B2, for which the
same argument holds. When the algorithm processes N2 and hits the inner sphere of B3, it will
set s3[min] as an upper bound and discard B4 at the next iteration, as S4[min] > s3[min]. The set
of active nodes contains B1, B2, and B3, even if B2 won’t contribute to computing the hit point.

To guarantee that an interval Ii contains a single root, it is sufficient for ϕ to be
monotone and the two extremes of the range BI to have different sign.
Therefore, to isolate the roots, one can use the well-known interval
refinement approach as described, for example, in [7, 4]: we successively
refine the ray segment until an interval is reached in which s 7→ ϕ(t, r(s)) is not

561

RAY TRACING GEMS II

B1 B2

B3 B4

N1

N2

r

h

Figure 35-7. The most unfortunate case, if we hit from outside, is when the ray r intersects many
bounding spheres, but no inner spheres. In this example, we add toA both of the nodes B2 and B3

(which are required to compute the hit point). Because we are not able to set an upper bound, if r
intersects any other blobby along is trajectory, it will be added toA, no matter its distance from
the origin. This cannot be avoided: there are cases where two bounding spheres intersects, but
not enough to define the isosurface between them. In this case, the ray can pass in between the
two blobbies and intersect something that is farther away.

B1 B2

B3 B4

N1

N2

r h

Figure 35-8. When hitting the isosurface from inside, we can stop the process only if all the
entries on the visiting stack are farther than the current upper bound. In this case, because r
doesn’t intersect N2, this node doesn’t appear on the stack. When we hit B1, the only entry to
compare with will be B2 whose bounding sphere is not touching B1. The traversal can stop
immediately.

bounded away from zero and is monotone (can’t contain multiple roots), i.e.,
the derivative with respect to s is guaranteed not to be zero. The interval
refinement can be done by bisection or an Interval Newton method [2], which
uses the bounds of the derivatives in the refinement process.

562

CHAPTER 35. RAY TRACING OF BLOBBIES

B1 B2

B3 B4

N1

N2

r h

Figure 35-9. In this example, we can see why the criteria used for an outside ray would not work
for an inside ray. When we hit the inner sphere of B1, we set S1[max] as the upper bound. As B2

does not intersect it, if hitting from outside, we would discard the node and keep going with the
blobbies in N2, ignoring the fact that the hit point is on its area of influence. This happens because
we cannot know, beforehand, that there will be a node in N2 acting as a bridge between B1 and B2

(B3). Hence, the test for an inside ray checks all the entries on the stack.

B1 B2

B3 B4

N1

N2

r
h

Figure 35-10. An unfortunate case for the inside ray scenario is when we hit the isosurface soon,
but we have a long chain of connected blobbies. The algorithm cannot know, a priori, that B2 and
B4 are not needed to detect the hit point, so it will add them to the setA, in the same fashion as
Figure 35-9.

Therefore, for a given ray r(s) = o + sd, the intersection distance interval relies
on computing the bounds of f(s) = ϕ(t, r(s)) and its derivative f′(s) in an
arbitrary subrange [smin, smax]. Of course, the efficiency of the refinement
process depends on how tight the bounds are.

563

RAY TRACING GEMS II

xi

s0 –ξ ξ–ζ ζ0 s1

o

ƒ

ƒ'

Figure 35-11. Calculating bounds of ψ along the ray by identifying monotone intervals.

Although interval arithmetic [4] could be applied for the computation of these
bounds, this approach tends to produce too loose bounds. Instead, we
proceed by computing tight bounds for the individual ψi (see Figure 35-11) and
aggregate them through additive composition. Furthermore, we exploit the
fact that ψi > 0 for early termination of the check for whether the bounds
contain a root at all.

To compute tight bounds for ψi, one can simply exploit the well-known fact
that the bounds of a monotone function are given by the values at the
endpoints. We assume for simplicity that o is at the projection (with respect to
gA) of the center xi(t) to the ray

gA(xi(t) – o,d) = 0, (35.10)

by computing the projection and shifting [smin, smax] accordingly.

Defining α = gA(o – xi, o – xi) and β = gA(d,d), we would then like to find the
bounds of f(s) = k(α + s2β) = (1 – α – s2β)3.

It can easily be seen that due to Equation 35.10 the support of f is [–ξ, ξ] with
ξ =
√
(1 – α)/β. It is monotonely increasing in [–ξ, 0] and decreasing in [0, ξ]

and furthermore has inflection points at –ζ, 0, and ζ with ζ =
√

1
5ξ (see

Figure 35-11, right).

Therefore, computing the bounds on f in I = [smin, smax] amounts to evaluating
at the endpoints of the subintervals [–ξ, 0] ∩ I and [0, ξ] ∩ I. Similarly, the
bounds of f′ are obtained by evaluating f′ at the values –ξ, –ζ, 0, ζ, ξ clipped to I.

564

CHAPTER 35. RAY TRACING OF BLOBBIES

NOTES

It is worth mentioning that some optimization could be done here, storing the
active blobbies in an interval tree to accelerate the query of all candidates in
every iteration of the interval refinement. However, due to the strategies
described previously to limit the growth of A, we have not confirmed in the
implementation that the interval tree amortizes in practice.

Furthermore, when aggregating the bounds of ψi to determine whether
ϕ(t, r(·)) may contain a root, we can discard the interval based on the fact that
all ψi are nonnegative: if the lower bound of the partial sum is larger than –T,
it will not recover from being bounded away from zero and therefore will not
contain a root.

For a GPU implementation, the described approach of collecting the active set
A per ray is not feasible because the number of elements is unbounded.
However, the interval refinement approach can also be implemented by
accumulating interval bounds on the fly in an anyhit program (see also [9]),
adjusting smax as described in Section 35.4.1. The strategy for rays inside the
surface as described in Section 35.4.1 is possible in principle but requires
some modifications to the stack to keep track of the minimum distance of all
its elements.

35.5 RESULTS

We apply the ray tracing algorithm on two different data sets. The first scene
is composed of 500 blobbies. They have been generated by randomizing their
position within a unit radius sphere. Each particle comes with an initial
velocity and acceleration. In Figure 35-12 we show how the BVH can be used
to render higher-order motion blur in an efficient way and the benefit of
having continuous derivatives all along the surface. We use the derivatives to
apply the temporal antialiasing technique described by Tessari et al. [10]. The
second asset is composed of 1,221,370 particles. It has been produced by
simulating the explosion of a water bowl and surfacing the final result with an
approach similar to that of Yu and Turk [12]. In Figure 35-13 we show how the
anisotropy improves the shape of the thin lines of water produced by the
explosion. We used Manuka [5] to run all our tests on a machine with 24 CPUs
at a resolution of 1920× 1080. In the first scene we had an average of
1.3 million rays per second, while for the second asset, where particles tend
to overlap more to each other, we averaged 236,000 rays per second.

565

RAY TRACING GEMS II

Figure 35-12. Top: a static frame of our data set, composed of 500 anisotropic particles. Bottom:
the details of one particle, after applying higher-order motion blur to it. On the right side, we
exploited the derivatives to apply temporal antialiasing [10]. We limited the number of samples per
pixel to 64, to show how the temporal antialiasing helps the convergence of the rendering.

Figure 35-13. In the case of a water bowl explosion, we have patterns of water representing thin
walls and lines. Anisotropy helps in preserving the correct shape of these structures. In the top
image, we can see how anisotropy compares to the isotropic case. The other images show the
details of a thin line of water, with its derivatives on the right side.

566

CHAPTER 35. RAY TRACING OF BLOBBIES

ACKNOWLEDGMENTS

We’d like to thank Louis-Daniel Poulin for his enormously helpful input in
various discussions on special effects rendering.

REFERENCES

[1] Blinn, J. A generalization of algebraic surface drawing. ACM Transactions on Graphics,
1(3):235–256, 1982. DOI: 10.1145/357306.357310.

[2] Capriani, O., Hvidegaard, L., Mortensen, M., and Schneider, T. Robust and efficient ray
intersection of implicit surfaces. Reliable Computing, 6:9–21, 2000. DOI:
10.1023/A:1009921806032.

[3] Christensen, P. H., Fong, J., Laur, D. M., and Batali, D. Ray tracing for the movie ‘Cars’. In
2006 IEEE Symposium on Interactive Ray Tracing, pages 1–6, 2006. DOI:
10.1109/RT.2006.280208.

[4] Díaz, J. E. F. Improvements in the Ray Tracing of Implicit Surfaces Based on Interval
Arithmetic. PhD thesis, Universitat de Girona, 2008.

[5] Fascione, L., Hanika, J., Leone, M., Droske, M., Schwarzhaupt, J., Davidovič, T.,
Weidlich, A., and Meng, J. Manuka: A batch-shading architecture for spectral path
tracing in movie production. ACM Transactions on Graphics, 37(3):31:1–31:18, Aug. 2018.
DOI: 10.1145/3182161.

[6] Kaplanyan, A. S., Hill, S., Patney, A., and Lefohn, A. Filtering distributions of normals for
shading antialiasing. In Proceedings of High Performance Graphics, pages 151–162, 2016.

[7] Knoll, A. Ray Tracing Implicit Surfaces for Interactive Visualization. PhD thesis, School of
Computing, Utah University, 2009.

[8] Museth, K. A flexible image processing approach to the surfacing of particle-based fluid
animation (invited talk). In K. Anjyo, editor, Mathematical Progress in Expressive Image
Synthesis I: Extended and Selected Results from the Symposium MEIS2013, pages 81–84.
Springer Japan, 2014. DOI: 10.1007/978-4-431-55007-5_11.

[9] Singh, J. M. and Narayanan, P. J. Real-time ray-tracing of implicit surfaces on the GPU.
IEEE Transactions on Visualization and Computer Graphics, 16(2):261–272, 2010. DOI:
10.1109/TVCG.2009.41.

[10] Tessari, L., Hanika, J., Dachsbacher, C., and Droske, M. Temporal normal distribution
functions. In Eurographics Symposium on Rendering—DL-only Track, pages 1–12, 2020.
DOI: 10.2312/sr.20201132.

[11] Tokuyoshi, Y. and Kaplanyan, A. S. Improved geometric specular antialiasing. In ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, 8:1–8:8, 2019. DOI:
10.1145/3306131.3317026.

[12] Yu, J. and Turk, G. Reconstructing surfaces of particle-based fluids using anisotropic
kernels. ACM Transactions on Graphics, 32(1):5:1–5:12, Feb. 2013. DOI:
10.1145/2421636.2421641.

567

https://doi.org/10.1145/357306.357310
https://doi.org/10.1023/A:1009921806032
https://doi.org/10.1109/RT.2006.280208
https://doi.org/10.1145/3182161
https://doi.org/10.1007/978-4-431-55007-5_11
https://doi.org/10.1109/TVCG.2009.41
https://doi.org/10.2312/sr.20201132
https://doi.org/10.1145/3306131.3317026
https://doi.org/10.1145/2421636.2421641

RAY TRACING GEMS II

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits any

noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if you modified the licensed material. You do not have permission under this license to share
adapted material derived from this chapter or parts of it.
The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

568

http://creativecommons.org/licenses/by-nc-nd/4.0/

	CHAPTER 35 RAY TRACING OF BLOBBIES
	ABSTRACT
	35.1 MOTIVATION
	35.2 ANISOTROPIC BLOBBIES
	35.3 BVH AND HIGHER-ORDER MOTION BLUR
	35.4 INTERSECTION METHODS
	35.4.1 DETERMINE THE ACTIVE BLOBBIES
	TRACING TOWARD FRONTFACE
	TRACING TOWARD BACKFACE
	EXAMPLES

	35.4.2 INTERVAL REFINEMENT
	NOTES

	35.5 RESULTS
	ACKNOWLEDGMENTS
	REFERENCES

